M1. (a) (i) **Ammonia** If reagent is missing or incorrect cannot score M3 1 Starts as a pink (solution) Changes to a yellow/straw (solution) Allow pale brown Do not allow reference to a precipitate 1 (ii) (dark) brown Do not allow pale/straw/yellow-brown (i.e. these and other shades except for dark brown) 1 (b) (i) Ruby/red-blue/purple/violet/green Do not allow red or blue If ppt mentioned contradiction/CE =0 1 Green If ppt mentioned contradiction/CE =0 1 $[Cr(H_2O)_6]^{3+} + 6OH^- \rightarrow [Cr(OH)_6]^{3-} + 6H_2O$ 1 Formula of product Can score this mark in (b) (ii) 1 $H_2O_2 + 2e^- \rightarrow 2OH^-$ (ii) 1 $2[Cr(OH)_6]^{3-} + 3H_2O_2 \rightarrow 2CrO_4^{2-} + 8H_2O + 2OH_2^{-}$ Allow 1 mark out of 2 for a balanced half-equation such as $Cr(III) \rightarrow Cr(VI) + 3e^{-}$ or $Cr^{3+} + 4H_2O \rightarrow CrO_4^{2-} + 8H^+ + 3e^-$ etc

Yellow

also for $2Cr(III) + 3H_2O_2 \rightarrow 2CrO_4^{2-}$ (unbalanced)

```
1
```

(c) $2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ if no equation and uses given ratio can score M2, M3, M4 & M5

1

Moles $MnO_4^- = (24.35/1000) \times 0.0187 = 4.55 \times 10^{-4}$

Note value must be quoted to at least 3 sig. figs.

M2 is for 4.55×10^{-4}

1

Moles $H_2O_2 = (4.55 \times 10^{-4}) \times 5/2 = 1.138 \times 10^{-3}$

M3 is for \times 5/2 (or 7/3)

Mark consequential on molar ratio from candidate's equation

ı

Moles H₂O₂ in 5 cm³ original

M4 is for \times 10

1

$$= (1.138 \times 10^{-3}) \times 10 = 0.01138$$

Original $[H_2O_2] = 0.01138 \times (1000/5) = 2.28 \text{ mol dm}^{-3}$

(allow 2.25-2.30)

M5 is for consequentially correct answer from (answer to mark 4) \times (1000/5)

Note an answer of between 2.25 and 2.30 is worth 4 marks) If candidate uses given ratio 3/7 max 4 marks:

M1: Moles of MnO₄⁻ = 4.55×10^{-4}

M2: Moles $H_2O_2 = (4.55 \times 10^{-4}) \times 7/3 = 1.0617 \times 10^{-3}$

M3: Moles H₂O₂ in 5 cm³ original

 $= (1.0617 \times 10^{-3}) \times 10 = 0.01062$

M4: Original $[H_2O_2] = 0.01062 \times (1000/5) = 2.12 \text{ mol dm}^{-3}$

(allow 2.10 to 2.15)

[17]

M2. (a) $CaF_2(s) \rightarrow Ca^{2+}(g) + 2F^{-}(g)$ 1 (b) (i) Enthalpy change for formation of 1 mol of substance Allow <u>heat energy change</u>, NOT energy 1 From its elements 1 Reactants and products/all substances in their standard states Or normal states at 298 K, 1 bar (100 kPa) 1 $Ca(s) + F_2(g) \rightarrow CaF_2(s)$ (ii) 1 (iii) $\Delta H_{\rm f}({\rm CaF_2}) = \Delta H_{\rm a}({\rm Ca}) + 1$ st ${\rm IE}({\rm Ca}) + 2^{\rm nd} {\rm IE}({\rm Ca}) + {\rm BE}({\rm F_2}) +$ $2 \times EA(F) - \Delta H_{L}(CaF_{2})$ Or labelled diagram 1 $= 193 + 590 + 1150 + 158 + (2 \times -348) - 2602$ 1 = -1207 kJ mol⁻¹ Correct answer scores 3 -842 scores 2 (transfer error) -859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark 1 (c) Electrostatic attraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions Molecular attraction/atoms/intermolecular forces CE=0 1 Because fluoride (ion) smaller than chloride Do not allow F or fluorine 1 (d) $\Delta H = \Delta H_L + \Sigma \Delta H_{hyd} = 2237 - 1650 + (2 \times -364)$ (i) Can be on cycle/diagram 1 = -141 kJ mol⁻¹ Correct answer scores 2 Units not required, wrong units lose 1 mark

		(ii)	Decreases If ans to (d)(i) positive allow increases		
			Reaction exothermic/ΔH –ve	1	
			If $(d)(i)$ +ve allow endothermic/ ΔH + ve	1	
			(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium opposes the change		
			If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change		
			If no answer to (d) (i) assume –ve ΔH used If effect deduced incorrectly from any ΔH CE = 0 for these 3		
			marks	1	
	(e)	u.v.	absorbed: electrons/they move to higher energy		
		(leve	els)/electrons excited	1	
		visible light given out: electrons/they fall back down/move to lower energy (levels)			
			Must refer to absorbing u.v. NOT visible light or this must be implied.		
				1	[17]
		<i>(</i>)			
М3.		(a)	Partially filled/incomplete d sub-shell/orbital/shell Ignore reference to f orbitals		
			Do not allow d block Do not allow half-filled d orbitals	1	
	(b)	Has	ligand(s)		
			Allow molecules/ions with lone pairs		

inked by co-ordinate bond	s
Allow dative/do	nation of lone pair

1

(c) (Blue) light is absorbed (from incident white light)

1

Due to electrons moving to higher levels/electrons excited Allow $d \rightarrow d$ transitions

1

Red light (that) remains (is transmitted)/light that remains (transmitted light) is the colour observed

Allow red light reflected

1

(d) (i) Circle round any O-List principle

1

Circle round either N

1

(ii) EDTA⁴⁻ + $[Co(H_2O)_{\delta}]^{2+}$ \rightarrow $[CoEDTA]^{2-}$ + $6H_2O$ Allow missing square brackets

Ignore state symbols

1

(iii) Increase in entropy/ ΔS positive Or increase in disorder

1

Because 2 mol (of particles/molecules/species/entities) form 7 mol Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation Do not allow increase in ions/atoms

1

(e) (i) Co-ordinate/dative/dative covalent bond

Allow pair of electrons donated by nitrogen/ligand

Do not allow pair of electrons donated from Iron/Fe

_			
Coval	lont.	ha	nd
www	C111	1111	

Shared electron pair

1

(ii) Transport of oxygen/O₂

Allow any statement that implies oxygen carried (around the body)

Do not allow transport of carbon dioxide (CO₂). This also contradicts the mark (list principle)

1

(iii) Because it bonds to the iron/haemoglobin

Allow blocks site /CO has greater affinity for haemoglobin /carboxyhaemoglobin more stable than oxyhaemoglobin

1

Displaces oxygen

Or prevents transport of <u>oxygen</u> QoL

[16]